Using the $\log _{\mathrm{ab}}($ Feature.

This resource was written by Derek Smith with the support of CASIO New Zealand. It may be freely distributed but remains the intellectual property of the author and CASIO.

Select the RUN/MAT icon from the Main Menu by using the arrow keys to highlight the RUN/MAT icon followed by [EXE] or by pressing the [1] key.

Logarithms were developed in the 17th century by Scottish mathematician, John
 Napier. A method used to turn a multiplication problem into an addition problem (and reducing division into a subtraction problem). The use of logarithms has made many branches of mathematics much easier to calculate. When calculus was developed later, logarithms became central to solving differential and integral calculus problems. Logarithms are still important in many fields of science and engineering and economics, even though we use calculators for most calculations now-a-days.

Use of the Solve feature in the Run/Mat icon.
Menu trail is: $[\mathbf{O P T N}]$ then $[\mathbf{F 4}]$ for CALC, then $[\mathbf{F 1}]$ for Solve,

Exponential Laws	Logarithm Laws
$x^{a} \cdot x^{b}=x^{a+b}$	$\log (a b)=\log (a)+\log (b)$
$\frac{x^{a}}{x^{b}}=x^{a-b}$	$\log \left(\frac{a}{b}\right)=\log (a)-\log (b)$
$\left(x^{a}\right)^{b}=x^{a b}$	$\log \left(d^{b}\right)=b \cdot \log (a)$
$x^{-a}=\frac{1}{x^{a}}$	$\log _{s}\left(\frac{1}{x^{a}}\right)=-a$
$x^{0}=1$	$\log _{x} 1=0$

$x^{a} \cdot x^{b}=x^{a+b}$
$\frac{x^{a}}{x^{b}}=x^{a-b}$
$\left(x^{a}\right)^{b}=x^{\alpha b}$
$x^{-a}=\frac{1}{x^{\alpha}}$
$x^{0}=1$
[EXE] to solve the equation.

In general: Solve(equation, variable)
Example 1: $\operatorname{Solve}(3 x=2 x-8, x)$ Example 2: $\operatorname{Solve}(3=2 \ln (x)-8, x)$ Example 3: $\operatorname{Solve}(\operatorname{Ln}(x)=2 \operatorname{Ln}(x)-8, x)$

50ue

Solve (ln X=2ln X-8,X) 2980.957987
We

Working:

$\begin{array}{ll}3 x=2 x-8 & 3=2 \ln (x)-8 \\ 3 x-2 \mathrm{x}=2 x-2 x-8 & 3+8=2 \ln (x)-8+8 \\ 1 x=-8 & 11=2 \ln (x) \\ x=-8 & 11 / 2=2 \ln (x) / 2 \\ & 5.5=\ln (x) \\ & e^{5.5}=\mathrm{e}^{\ln (x)} \\ & e^{5.5}=x\end{array}$
$\operatorname{Ln}(x)=2 \operatorname{Ln}(x)-8$
$\operatorname{Ln}(x)+8=2 \operatorname{Ln}(x)-8+8$
$\operatorname{Ln}(x)+8=2 \operatorname{Ln}(x)$
$\operatorname{Ln}(x)+8-\ln (\mathrm{x})=2 \operatorname{Ln}(x)-\ln (\mathrm{x})$
$8=\operatorname{Ln}(x)$
$e^{8}=e^{\operatorname{Ln}(x)}$
This is great if the base of the logarithm is either 10 or e !
The FX9750GII has a 'logab(' function, which means that any base can be used to solve a logarithmic equation in any base.

Menu trail is: [OPTN] then [F4] for CALC, then [F6] for More choices and [F4] for logab(.

For instance entering $\log _{5} 25$, bring up logab (, as above, then 5 followed by a comma [,] then 25 , lastly [)].

Example 1:

(a) Find the value of $\log _{2} 1024$.

Equation is: $\log _{2} 1024=x$

Checking:
(b) Find the value of x, if $x=\log _{3} 81$. Equation is: $\log _{3} 81=x$

(c) Solve the equations $\log _{x} 64=3$. Equation is: $\log _{x} 64=3$

Example 2:

Solve the equation $\log _{4}(3 w+1)=2$.
Equation is: $\log _{4}(3 x+1)=2$

Also using the 'Solve' feature for equations with exponents.

Example:

(a) Solve the equation $5^{x} \times 2^{-2 x}=15$

Equation is:
(b) Solve the equation $3 \times 2^{2 x+1}=96 \times 8^{x}$ Equation is:

(d) Solve the equation $\log _{x} 343=3$

Equation is: $\log _{x} 343=3$

Note: This logab(feature can also be used in the Graph icon.

then [F2] for CALC

icon.

[OPTN]

For example: Sketch $y=\log _{2} x$
As above then: then type in $2[$,$] then [\mathbf{X}]$ and [EXE].

A practice link: http://www.intmath.com/exponential-logarithmic-functions/3-logarithm-laws.php

